Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(9): 2453-2461, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38407025

RESUMO

The organic-inorganic halide perovskite has become one of the most promising candidates for next-generation memory devices, i.e. memristors, with excellent performance and solution-processable preparation. Yet, the mechanism of resistive switching in perovskite-based memristors remains ambiguous due to a lack of in situ visualized characterization methods. Here, we directly observe the switching process of perovskite memristors with in situ photoluminescence (PL) imaging microscopy under an external electric field. Furthermore, the corresponding element composition of conductive filaments (CFs) is studied, indicating that the metallic CFs with respect to the activity of the top electrode are essential for device performance. Finally, electrochemical impedance spectroscopy (EIS) is conducted to reveal that the transition of ion states is associated with the formation of metallic CFs. This study provides in-depth insights into the switching mechanism of perovskite memristors, paving a pathway to develop and optimize high-performance perovskite memristors for large-scale applications.

2.
Nanotechnology ; 34(31)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37116476

RESUMO

Last decades have witnessed the rapid development of ultraviolet (UV) photodetectors in diversity of applications. The III-nitride semiconductor and metal halide perovskite have both performed promising UV-sensing optoelectronic properties. However, they are still suffering from either the high temperature epitaxial-growth or low photocurrent generated in UV range. In this work, we demonstrate an innovative MAPbCl3/GaN particle hybrid device with all-solution-processed deposition methods. Comparing to the control MAPbCl3photoconductors, the photo-sensing ability of the hybrid device with the optimal concentration of GaN particles is more than one order of magnitude enhanced, and report a responsivity of 86 mA W-1, a detectivity of 3.1 × 1011Jones and a rise/fall time of 1.1/10.7 ms at 360 nm. The photocurrent increment could be attributed to the enhanced UV absorption of GaN particles and facilitated charge separation and photoconductive gain at MAPbCl3/GaN heterojunction. This work paves a pathway towards the large-scale low-cost UV photodetectors in versatile applications.

3.
ACS Appl Mater Interfaces ; 14(13): 15840-15848, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35319867

RESUMO

Instability caused by the migrating ions is one of the major obstacles toward the large-scale application of metal halide perovskite optoelectronics. Inactivating mobile ions/defects via chemical passivation, e.g., amino acid treatment, is a widely accepted approach to solve that problem. To investigate the detailed interplay, L-phenylalanine (PAA), a typical amino acid, is used to modify the SnO2/MAPbI3 interface. The champion device with PAA treatment maintains 80% of its initial power conversion efficiency (PCE) when stored after 528 h in an ambient condition with the relative humidity exceeding 70%. By employing a wide-field photoluminescence imaging microscope to visualize the ion movement and calculate ionic mobility quantitatively, we propose a model for enhanced stability in perspective of suppressed ion migration. Besides, we reveal that the PAA dipole layer facilitates charge transfer at the interface, enhancing the PCE of devices. Our work may provide an in-depth understanding toward high-efficiency and stable perovskite optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...